Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.

نویسندگان

  • Shaodong Sun
  • Yuexia Sun
  • Anran Chen
  • Xiaozhe Zhang
  • Zhimao Yang
چکیده

Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and without annealing treatment in air. Antlerite Cu3(OH)4(SO4) precursors formed in a low volume ratio between water and ethanol can transform into a two-dimensional (2D) hierarchical nanoporous CuO ribbon assembly of free-standing nanoneedle building blocks and hierarchical nanoneedle-aggregated CuO flowers. Brochantite Cu4(OH)6(SO4) precursors formed in a high volume ratio between water and ethanol can transform into hierarchical nanoplate-aggregated CuO nanoribbons and nanoflowers. Such 2D hierarchical nanoporous CuO ribbons serving as a promising electrode material for nonenzymatic glucose detection show high sensitivity, a low detection limit, fast amperometric response and good selectivity. Significantly, this green water-induced precursor-hydrolysis method might be used to control effectively the growth of other metal oxide micro-/nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A viscosity-dependent affinity sensor for continuous monitoring of glucose in biological fluids.

We present a viscometric affinity biosensor for continuous monitoring of glucose in biological fluids such as blood and plasma. The sensing principle of this chemico-mechanical sensor is based upon the viscosity variation of a sensitive fluid with glucose concentration. Basically, this device includes both an actuating and a sensing piezoelectric diaphragms as well as a flow-resistive microchan...

متن کامل

Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to deter...

متن کامل

Fabrication of Resistive E. coli Biosensor Based on ZnO Nanorods and Nanoparticles

In this paper, a biosensor has been fabricated using ZnO nanorods and nanoparticles to detect different concentrations of the E. coli bacteria. The innovation of this paper lies in design and fabrication of the resistive type E Coli bacteria sensor. To make this biosensors, printed circuit board based electrodes are designed and made in an interdigitated shape. Both hydrothermal and drop cast m...

متن کامل

Self-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors

Separative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with s...

متن کامل

Ultrasensitive electrochemiluminescence detection of DNA based on nanoporous gold electrode and PdCu@carbon nanocrystal composites as labels.

A sensitive electrochemiluminescence (ECL) DNA biosensor based on nanoporous gold (NPG) electrode and PdCu@carbon nanocrystals (CNCs) composites is developed. The CNCs were obtained simply by electrooxidation with abundant carboxyl groups at their surfaces. The NPG can be easily prepared by a selective dissolution of silver from silver-gold alloy in nitric acid, which has free-standing noble me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 15  شماره 

صفحات  -

تاریخ انتشار 2015